关于我们MORE>>
    中国航天科技集团公司是根据国务院深化国防科技工业管理体制改革的战略部署,经国务院批准,于1999年7月1日在原中国航天工业总公司所属部分企事业单位基础上组建的国有特大型高科...
当前位置:首页 > 期刊导读 > 2015 > 06 >

基于遗传算法的RBM优化设计

作者: 刘凯 ; 张立民 ; 孙永威

摘要: 为了有效解决受限玻尔兹曼机在设计时没有规律遵循并很难保证网络最优化的问题,提出一种基于遗传算法的RBM辅助优化设计方法 (Genetic Algorithm-Restricted Boltzmann Machine,GA-RBM),完成了RBM模型结构和权值的全局搜索.针对RBM特点,设计RBM模型个体编码方式和适应度函数,实现了通过遗传算法对可见单元维度的优化和隐单元个数的选择.通过MNIST实验证明,相较于其他常规的数据降维方式,该方法不仅可以降低可见单元维数,而且能够有效提高RBM特征提取性能,达到了通过遗传算法实现RBM模型优化设计的目的.


关键字: 人工神经网络 受限玻尔兹曼机 遗传算法 最优化


上一篇:农田地下无线传感器网络信号传播特性研究
下一篇:一种应用于AGC的可编程CMOS指数函数发生器