关于我们MORE>>
    中国航天科技集团公司是根据国务院深化国防科技工业管理体制改革的战略部署,经国务院批准,于1999年7月1日在原中国航天工业总公司所属部分企事业单位基础上组建的国有特大型高科...
当前位置:首页 > 期刊导读 > 2013 > 02 >

证据理论和改进神经网络相融合的图像识别算法

作者: 王丽艳

摘要:针对单一特征图像自动识别算法存在识别结果不稳定和识别正确率低等缺陷,提出一种基于证据理论和改进神经网络相融合的图像自动识别算法.首先提取能反映图像类别信息的颜色和纹理特征,然后采用RBF神经网络对单一特征进行初步识别,识别结果作作为证据,最后采用证据理论对初步识别结果进行决策融合处理,得到图像最终识别结果.仿真测试结果表明,该算法的平均识别正确率达到92.29%,相对于单一特征识别算法,图像识别结果的可靠性和正确率得到了大幅提高,具有较好的应用前景.


关键字: 颜色特征 纹理特征 神经网络 证据理论


上一篇:一种改进Mean shift算法的视频监控系统
下一篇:贪婪算法与动态规划结合的任务规划方法